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ABSTRACT 
 

A collision between bodies is an important phenomenon in many engineering practical 

applications. The most important problem with the collision analysis is determining the 

hysteresis damping factor or the hysteresis damping ratio. The hysteresis damping ratio is 

related to the coefficient of restitution in the collision between two solid bodies. In this 

paper, at first, the relation between the deformation and its velocity of the contact process is 

presented. Due to the complexity of the problem under study, a new powerful hybrid 

metaheuristic method is used to achieve the optimal model. For this purpose, by using 

imperialist competitive ant colony optimization algorithm, for minimizing the root mean 

square of the hysteresis damping ratio, the optimal model is determined. The optimal model 

is entirely acceptable for the wide range of the coefficient of restitution. So, it can be used in 

hard and soft impact problems. 

 

Kewords: Optimal model; Hybrid metaheuristic method; Collision; Contact force model; 

Hysteresis damping ratio. 
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1. INTRODUCTION 
The field of metaheuristic optimization algorithms has recently been attracted to finding the 

global optimal solution. Many researchers have presented new approaches or improved the 

existing methods. For example, colliding bodies optimization (CBO) [1, 2], enhanced 

colliding bodies optimization (ECBO) [3, 4], vibrating particles system [5], enhanced 
vibrating particles system [6], time evolutionary optimization (TEO) [7], and enhanced 

time evolutionary optimization (ETEO) [8, 9] are examples of these algorithms. In addition 

to the hybrid metaheuristic optimization methods due to their superior advantages, have 
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been utilized in engineering optimization designs [10]. Researchers have recently 

proposed many hybrid methods such as imperialist competitive ant colony optimization 

[11], hybrid improved dolphin echolocation and ant colony optimization algorithm [12], 

hybrid genetic modified colliding bodies optimization [13, 14], water cycle mine blast 

algorithm [15], quantum evolutionary algorithm hybridized with enhanced colliding 

bodies [16], colliding bodies optimization and Morlet wavelet mutation and quadratic 

interpolation [17], enhanced colliding bodies optimization and artificial neural network 

[18], Harris Hawks optimization and imperialist competitive algorithm [19] and two 

different versions colliding bodies optimization such as ECBO and NECBO [20] and 

etc. 
This paper aims to predict an optimal model of contact force for the collision behavior of 

two objects using a hybrid metaheuristic optimization method that in the following, 

explanations are provided in this regard. 

A collision between two solid bodies is a usual phenomenon in many engineering 

applications such as mechanisms [21-22], robotics [23], biomechanics [24], railway 

dynamics [25], and impact dampers [26]. The state of the mechanical system is changed 

abruptly in the contact events. The velocities and accelerations of the colliding bodies 

are discontinuous in these problems. This discontinuity causes the nonlinearity of the 

dynamic behavior of multibody systems. When two bodies impact each other, the 

contact force relationship between them must be satisfied. Therefore, the contact force 

model is an important issue in the contact process. 

The most important problem in the nonlinear viscoelastic model is determining the 

hysteresis damping factor or the hysteresis damping ratio. Many researchers have 

worked on this matter. Some researches such as Ristow [27], Lee and Herrmann [28], 

Schäfer et al. [29], Bordbar and Hyppänen [30], as well as Zhang and Sharf [31] 

determined the hysteresis damping factor by the experimental tests. Herbert and 

McWhannell [32], Gonthier et al. [33], as well as Zhang and Sharf [34] proposed an 

exact equation for determining the hysteresis damping factor. This exact equation is a 

nonlinear function between the hysteresis damping factor and the physical parameters of 

the contact process such as the coefficient of restitution. This equation doesn’t have an 

explicit solution but can be solved numerically. Hunt and Crossley [35], Lee and Wang 

[36], Kuwabara and Kono [37], Lankarani and Nikravesh [38], Tsuji et al. [39], 

Brilliantov et al. [40], Marhefka and Orin [23], as well as Gharib and Hurmuzlu [41] 

considered a simple assumption and obtained an explicit expression for the hysteresis 

damping factor. Some researchers such as Flores et al [42], Hu and Guo [43], and 

Safaeifar and Farshidinafar [44] considered an expression for the relation between the 

deformation and its velocity. These researchers obtained an explicit expression between 

the hysteresis damping factor and the coefficient of restitution. 

The literature review on the contact force models of collision between two solid 

bodies shows that these models were typically proposed by comparing the obtained 

results and so far, no optimal model has been presented in this regard. For this reason, in 

this research, a new hybrid meta-heuristic optimization algorithm is applied due to the 

complexity, nonlinearity, and high computational cost of the problem of the contact 
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force model for the collision between two solid bodies.  

The imperialist competitive ant colony optimization method (ICACO) is a hybrid 

strong metaheuristic optimization method that has excellent advantages including 

comfortable performance, a low number of tuning parameters, a high ability to the 

analysis of complex engineering problems, and, a fast convergence rate [11]. 

In this research, an optimal new model for the contact force between two colliding 

bodies is acquired by using imperialist competitive ant colony optimization. For this 

purpose, at first, the mathematical modeling of a contact process has been reviewed and 

then the characteristics and implementation of ICACO are presented. Finally, the 

optimal model of the contact force for the collision between two solid bodies is provided 

by using the ICACO method. 

 
 

2. MATHEMATICAL MODELING 
 

Collision is a physical process which can be occurred in our daily life. Impact refers to the 

collision between two solid bodies which it is determined by the generation of large contact 

forces acting over a short interval of time. 

Collisions between bodies are governed by the conversation laws of momentum [1,45]. Fig. 

1 shows collisions between two solid bodies [46]. In this figure two bodies with masses of 

𝑚1 and 𝑚2 are moving in 1-dimensional space with velocities 𝑣1 and 𝑣2 before impact. For 

collision conditions these velocities must related so that 𝑣1 > 𝑣2 . These two bodies collide 

with each other and their velocities after impact (𝑣1
′ and 𝑣2

′) related so that 𝑣1
′ < 𝑣2

′. 

 

 

Figure 1. The velocities before and after impact in collision between two solids 

 

In the impact process, two solid bodies act a force F to each other which can be shown in 

Fig. 2 where the net external force is zero. 

 

  
Figure 2. The acting force in collision between two solids 
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Provided that there are no net external forces acting upon these two colliding solids, the 

momentum of these solids before the collision equals to the momentum of them after the 

collision, and can be expressed by the following equation [3,45]: 

 

𝑚1 𝑣1 + 𝑚2 𝑣2 = 𝑚1 𝑣1
′ + 𝑚2 𝑣2

′ (1) 

 

Likewise, the conservation of the total kinetic energy is expressed as: 

 
1

2
𝑚1 𝑣1

2 +
1

2
𝑚2 𝑣2

2 =
1

2
𝑚1 𝑣1

′2
+

1

2
𝑚2 𝑣2

′2
+ 𝑄 (2) 

 

where Q is the loss of kinetic energy due to the impact [3,46]. 

The formulas for the velocities after a one-dimensional collision can be determined as 

follows [20]: 

 

𝑣1
′ =

(𝑚1 − 𝑐𝑟𝑚2)𝑣1 + (𝑚2 + 𝑐𝑟𝑚2)𝑣2

𝑚1 + 𝑚2

 

𝑣2
′ =

(𝑚2 − 𝑐𝑟𝑚1)𝑣2 + (𝑚1 + 𝑐𝑟𝑚1)𝑣1

𝑚1 + 𝑚2

 

(3) 

 

where 𝑐𝑟 is the Coefficient of Restitution (COR) of the two colliding bodies, defined as the 

ratio of relative velocity of separation to relative velocity of approach [47]: 

 

𝑐𝑟 =
|𝑣2

′ − 𝑣1
′|

|𝑣1 − 𝑣2|
  (4) 

 

According to the coefficient of restitution, there are two special cases of any collision as 

follows [47]: 

1) A perfectly elastic collision is defined as the one in which there is no loss of kinetic 

energy in the collision (𝑄 = 0 and 𝑐𝑟 = 1).  

2) An inelastic collision is the one in which part of the kinetic energy is changed to some 

other form of energy in the collision. Some of kinetic energy will be converted to other 

forms of energy. In this case, coefficient of restitution does not equal to one (𝑄 ≠ 0 and 

𝑐𝑟 ≤ 1). For the most real objects, the value of 𝑐𝑟 is between 0 and 1 [47]. 

Fig. 3 shows the contact between two solid spheres. In this figure, x1, x2, δ1, and δ2 

represent the displacements of the center of mass and the deformations of both spheres, 

respectively, just like the parameters m1, m2, R1, and R2 that represent the masses and the 

radii of both spheres [44]. In this figure, the total deformation δ is the sum of deformations 

of both spheres, i.e., δ = δ1 + δ2.  

Many researchers proposed a nonlinear viscoelastic contact force model for the collision 

between two solid bodies which can be expressed as [44] 

 

𝐹 = 𝐾𝛿𝑛 + 𝐶𝛿𝑛�̇� (5) 
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where 𝐾 represents the generalized stiffness parameter and 𝛿 is the relative normal 

deformation between the two contacting bodies. For the two contacting spheres, the 

generalized parameter 𝐾 is a function of the radii of the spheres and the material properties. 

Under this condition, the generalized parameter 𝐾 can be expressed as [27,39,48] 

 

 
Figure 3. The contact between two spheres 

 

𝐾 =
4

3𝜋(𝜎1 + 𝜎2)
√

𝑅1 𝑅2

𝑅1 + 𝑅2

 (6) 

 

where 𝑅1 and 𝑅2 are the radii of the spheres, and the material parameters of the spheres, 𝜎1 

and 𝜎2 , are given by 

 

𝜎𝑖 =
1 − 𝑣𝑖

2

𝜋 𝐸𝑖

      𝑖 = 1,2 (7) 

 

where the variables 𝑣𝑖 and 𝐸𝑖 are the Poisson’s ratios and the Young moduli of the spheres, 

respectively.  

The exponent 𝑛 in Eq. (5) is usually set to 3/2 in the Hertz model [38] and 𝐶 in this 

equation is the hysteresis damping factor. So, the contact force between the two colliding 

spheres can be expressed as [44] 

 

𝐹 = 𝐾𝛿3/2 + 𝐶𝛿3/2�̇� (8) 

 

The relations between the hysteresis damping factor and the coefficient of restitution in 

some earlier contact force models are listed in Table 1. 

Each contact process consists of two phases. The first phase is named compression, while 

the other phase is named restitution [48]. The two spheres come in contact and reach their 

maximum deformation during the compression period. In this period, the deformation 

velocity is reduced from its initial value to zero. The two spheres separate from each other 
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during the restitution period, in which the deformation velocity is increased to its maximum 

value. 

 
Table 1. The hysteresis damping factor in some earlier contact force models 

The contact force model The hysteresis damping factor (𝐶) 

Hunt and Crossley [35]  
3(1 − 𝑐𝑟)

2
 

𝐾

�̇�−
 

Lankarani and Nikravesh [38]  
3(1 − 𝑐𝑟

2)

4
 

𝐾

�̇�−
 

Flores et al. [42]  
8 (1 − 𝑐𝑟)

5 𝑐𝑟
 

𝐾

�̇�−
 

Gharib and Hurmuzlu [41]  
1

𝑐𝑟
 

𝐾

�̇�−
 

Hu and Guo [43]  
3 (1 − 𝑐𝑟)

2 𝑐𝑟
 

𝐾

�̇�−
 

Safaeifar and Farshidianfar [44] 
5 (1 − 𝑐𝑟)

4 𝑐𝑟
 

𝐾

�̇�−
 

 

The relation between the hysteresis damping factor and the coefficient of restitution can 

be expressed as [34, 44] 

 

�̇�−(1 + 𝑐𝑟) +
𝐾

𝐶
𝑙𝑛 (

𝐾 − 𝐶𝑐𝑟�̇�−

𝐾 + 𝐶�̇�−
) = 0 (9) 

 

For simplicity, the hysteresis damping ratio is defined as [44] 

 

ℎ𝑟 =
𝐶�̇�−

𝐾
 (10) 

 

So, the relation between the hysteresis damping ratio and the coefficient of restitution can 

be expressed as [34,44] 

 

ℎ𝑟(1 + 𝑐𝑟) = 𝑙𝑛 (
1 + ℎ𝑟

1 − 𝑐𝑟ℎ𝑟
) (11) 

 

This relation is the exact equation between the hysteresis damping ratio and the 

coefficient of restitution. 

This equation has no explicit solution but can be solved numerically [44]. To derive an 

explicit expression for the relation between the hysteresis damping ratio and the coefficient 

of restitution, a simpler relation between the deformation and its velocity can be considered. 

The relation between the hysteresis damping ratio and the coefficient of restitution in the 

numerical model and the earlier models was shown in Fig. 4. 
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Figure 4. The hysteresis damping ratio versus the coefficient of restitution in the numerical 

model and the earlier models 

 

As shown in Fig. 4, Safaeifar and Farshidinafar's model [44] and the numerical model 

almost have similar behavior for most values of the coefficient of restitution but it isn’t 

optimal and can be improved. When the coefficient of restitution is nearing zero, the 

hysteresis damping ratio in this model becomes infinite. The hysteresis damping ratio 

becomes zero when the coefficient of restitution is equal to unity. These two points are 

logical from the physical view of the contact process. 

The numerical model is nearly equivalent to the real contact force model. So, for almost 

values of coefficient of restitution, Safaeifar and Farshidinfar model is closer to reality. 

It can be observed that the behavior of Flores et al. [42], Hu and Guo [43] and Safaeifar 

and Farshidinafar [44] models are almost similar to the numerical model. Flores et al. used 

the solution of the Kelvin_Voigt model and considered the relation between the deformation 

and its velocity as [42]. 

 

�̇�

�̇�−
= (1 − (

𝛿

𝛿𝑚𝑎𝑥
)

2

)

1
2

 (12) 

 

Hu and Guo used the solution of the Hertz model and considered the relation between the 

deformation and its velocity as [43] 
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�̇�

�̇�−
= (1 − (

𝛿

𝛿𝑚𝑎𝑥
)

5
2

)

1
2

 (13) 

 

Safaeifar and Farshidinfar considered a parametric expression for the relation between 

the deformation and its velocity in the compression period [44] 

 

�̇�

�̇�−
= (1 − (

𝛿

𝛿𝑚𝑎𝑥
)

𝑎

)

1
𝑏

 (14) 

 

where 𝑎 and 𝑏 are two unknown constants. Safaeifar and Farshidinfar determined 𝑎 and 𝑏 

using minimizing the root mean square (rms) of the percentage error of the hysteresis 

damping ratio of their model with respect to the numerical model. This minimizing is done 

by comparing results of some determined values for 𝑎 and 𝑏 [44]. Safaeifar and Farshidinfar 

model can be expressed as [44] 

 

�̇�

�̇�−
= (1 − (

𝛿

𝛿𝑚𝑎𝑥
)

3
2

)

2
11

 (15) 

 

Introducing I = ∫ y3/2(1 − ya)
1

bdy
1

0
 , the hysteresis damping factor can be obtained as 

[44] 

 

𝐶 =
2

5𝐼

(1 − 𝑐𝑟)

𝑐𝑟

𝐾

�̇�−
 (16) 

 

The hysteresis damping ratio in the new model can be expressed as [44] 

 

ℎ𝑟 =
2

5𝐼

(1 − 𝑐𝑟)

𝑐𝑟

 (17) 

 

where 𝐼 is a function of two unknown constants 𝑎 and 𝑏.  

As shown in Eqs. (10), (11), and (14), it is clear that the relation between the deformation 

and deformation velocity is related to the modulus of elasticity, Poisson’s ratio, radius, and 

mass of two colliding bodies. So, parameters 𝑎, 𝑏 and 𝐼 are related to the modulus of 

elasticity, Poisson’s ratio, radius, and mass of two colliding bodies. 

 

 

3. IMPERIALIST COMPETITIVE ANT COLONY OPTIMIZATION (ICACO) 
 

Imperialist competitive ant colony optimization (ICACO) is a hybrid meta heuristic 

 [
 D

O
I:

 1
0.

22
06

8/
ijo

ce
.2

02
4.

14
.1

.5
73

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 k

ha
bg

ah
.iu

st
.a

c.
ir

 o
n 

20
25

-0
4-

30
 ]

 

                             8 / 19

http://dx.doi.org/10.22068/ijoce.2024.14.1.573
https://khabgah.iust.ac.ir/ijoce/article-1-573-en.html


OPTIMAL MODEL OF THE CONTACT FORCE FOR THE COLLISION BETWEEN … 

 

25 

optimization method using the socio-political mutation of humans as an origin of inspiration 

[11]. ICACO consists of a combination of imperialist competitive algorithm (ICA) and ant 

colony optimization (ACO). The primary version of ICA originates randomly and each 

individual of them is named ‘country’. The population is then classified into two groups, 

including imperialists and colonies of imperialists [49-50]. Colonies are under the control of 

an imperialist. The imperialists had much power (the more optimized countries) with respect 

to colonies so all the colonies were distributed between imperialists based on their authority. 

Every empire has involved an imperialist with its colonies. During the optimization 

procedure, colonies started to move to their imperialist. In an empire, if a colony has better 

power than that of an imperialist, the position of the colony and its associated imperialist 

must be exchanged. To estimate the total power of an empire, the percentage of the average 

power of colonies and the imperialist of it is regarded. The empires that cannot enhance their 

power in the imperialistic competition will gradually become weaker and will eliminate 

eventually. Therefore, their colonies would join into other empires and, stronger empires 

were constructed. The competition between the empires is performed until only one empire 

remains. Finally, in this empire, the characteristics and power of all the colonies and 

imperialists will be the same. 

The steps of the optimization process by ICA are as follows: 

Step 1: Design initial country positions by Eq. (18) 

 

𝑋𝑘,𝑙
(0)

= 𝑈𝑥𝑘

𝑏 + 𝑟. (𝑈𝑥𝑘

𝑏 − 𝐿𝑥𝑘

𝑏 ), |
𝑘 = 1,2, … , 𝑁𝐷𝑉

𝑙 = 1,2, … , 𝑁     
 (18) 

 

where 𝑋𝑘,𝑙
(0)

 is the initial value of the kth design variable for the lth country; 𝑈𝑥𝑘

𝑏  and 𝐿𝑥𝑘

𝑏  are 

side constraint; 𝑟 is a random number between zero and unity, 𝑁  and 𝑁𝐷𝑉  are the entire 

number of countries and design variables, respectively. 

Step 2: Define imperialist and colonies 

After the objective function of the initial countries is estimated, the empires are 

constructed. So, some of the countries with high power will be chosen as the imperialist 

states and the rest of them will be the colonies. 

Step 3: Move the colonies toward their relevant imperialists 

The colony movement towards the imperialist was defined as Eq. (19): 

 

{𝑋}𝑛𝑒𝑤 = {𝑋}𝑜𝑙𝑑 + 𝑈(0, 𝛽 × 𝑑) × {𝑉1} (19) 

 

where 𝑈 has a random cost that is distributed evenly between zero and 𝛽 × 𝑑. 𝑑 and 𝛽 are 

the distance between imperialist and colony, and a scaler parameter that is greater than 1 

respectively. {𝑉1}  is a unit vector between the locations of the colony and the relevant 

imperialist. 

The random parameter 𝜃  is regarded the direction of movement for growing the 

searching space around the imperialist. 

 

𝜃 = 𝑈(−𝛾, +𝛾) (20) 

 

where 𝛾 is a parameter that modifies the change from the main direction. 
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Step 4: Change the location of the best colony and its imperialist 

In this step, if a colony is designed with more power than the associated imperialist, the 

location of the imperialist and colony will be exchanged. 

Step 5: Estimate the total power of an empire 

The total power of an empire is estimated based on both the power of the imperialist and 

its colonies as Eq. (21). 

 

𝑇𝐶𝑙 = 𝑓(𝑖𝑚𝑝,𝑙) + 𝜉.
∑ 𝑓(𝑐𝑜𝑙,𝑙)𝑁𝐶𝑙

𝑖=1

𝑁𝐶𝑙

 (21) 

 

where 𝑇𝐶𝑙 is the total power of the lth empire, 𝑓 is the fitness function, 𝑁𝐶𝑙  is the number of 

empires, 𝜉 has a nonnegative value and less than one. 

Step 6: Select the weakest colony in the least powerful empire and join with the most 

powerful empire. 

Step 7: Collapse of the empires without colonies 

Step 8: Stop the optimization algorithm if the stop criteria are satisfied otherwise go to 

step two. 

The graphical steps imperialist competitive algorithm is shown in Fig. 5 [10]. In this 

figure, the stars represent the imperialists and the circles depict the colonies. 

 

The most important defect of the imperialist competitive algorithm is not balancing 

among exploration and exploitation phases in optimization process. In order to fix this 

weakness, the two methods ICA and ACO were combined, and a new hybrid method called 

imperialist competitive ant colony optimization (ICACO) was developed [11]. In ICACO, at 

first, initial ants (𝑁𝐶𝑜𝑙) are produced. The locations of these ants are created around their 

associated imperialist. 

 

𝐴𝑛𝑡𝑙,𝑛
𝑘 = 𝑁(𝑖𝑚𝑝𝑁, 𝜎), |

𝑙 = 1,2, … , 𝑁. 𝐶𝑛

𝑛 = 1,2, … , 𝑁𝑖𝑚𝑝
 (22) 

where 𝑁. 𝐶𝑛  and 𝑁𝑖𝑚𝑝  are the number of colonies of the nth empire and imperialist 

respectively. The solution 𝐴𝑛𝑡𝑙,𝑛
𝑘  is created by ant lth in empire nth in the iteration k; 

 

𝐴𝑛𝑡𝑘 = [𝐴𝑛𝑡1,1 … 𝐴𝑛𝑡𝑁.𝐶1,1 𝐴𝑛𝑡1,2 … 𝐴𝑛𝑡𝑁.𝐶1,2 … 𝐴𝑛𝑡𝑁.𝐶𝑖𝑚𝑝,𝑁𝑖𝑚𝑝
]

𝑇
, 

𝑁. 𝐶1 + 𝑁. 𝐶2 + ⋯ + 𝑁. 𝐶𝑁𝑖𝑚𝑝
= 𝑁𝑐𝑜𝑙 

(23) 

 

𝑁(𝑖𝑚𝑝𝑁 , 𝜎) has a normal random value that is distributed with variance 𝜎 and average 

value imperialist nth. Variance 𝜎 is determined by Eq. (24). 

 

𝜎 = (𝑈𝑏 − 𝐿𝑏) × 𝜂 (24) 
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Figure 5. The graphical steps of ICA [10] 

 

where 𝐿𝑏  and 𝑈𝑏  are the lower and upper bound respectively. 𝜂  is used to regulate the 

moving step which initially is equal to one and by approaching the optimum point, decreases 

gradually and finally tends to zero. After producing Ants, the value of their fitness function 

of them (𝑓(𝐴𝑛𝑡𝑙,𝑛
𝑘 )) is determined. If 𝑓(𝑐𝑜𝑙𝑜𝑛𝑦𝑙,𝑛

𝑘 ) is in the feasible domain and it is more 

than 𝑓(𝐴𝑛𝑡𝑙,𝑛
𝑘 ), the location of ant lth in empire nth (𝐴𝑛𝑡𝑙,𝑛

𝑘 ) is exchanged with the location 

𝑐𝑜𝑙𝑜𝑛𝑦𝑙,𝑛
𝑘  (the current location of colony lth in empire nth).  

The hybridization of ant colony optimization and imperialist competitive algorithm 

creates a balance between the exploration and exploitation phases. Fig. 4 presents the 

flowchart of the ICACO algorithm [26]. In this figure, the blue parts are inspired by ACO. 
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Figure 6. Flowchart of the imperialist competitive ant colony optimization [11]  

 

 

4. OPTIMAL MODEL OF THE CONTACT FORCE 
 

In this section, the optimal model of the contact force for the collision between two solid 

bodies will be determined by using ICACO. For this purpose, at first two codes in 

MATLAB consist of analyzing the main problem, and the optimization process with ICACO 

are produced. Next, by linking these two codes, the optimal model of the problem is 

obtained. 

In the optimization process, the parameters tuning such as 𝜉, 𝛽, 𝛾 are 0.1, 2.0, and 0.3 

respectively. The number of initial population and imperialist are 20 and 3 respectively. The 

positions of the initial population and imperialists are shown in Fig. 7. As mentioned earlier, 

the stars and circles depict the imperialists and colonies respectively. The more power of an 

empire, the bigger star is shown for it. The positions of countries in the 12th iteration and 

final iteration are shown in Fig. 8. As it can be seen, at this iteration, there exists just one 

empire and all the colonies belong to one imperialist. Then all the colonies move toward the 

remained imperialist and will have the same cost and power as their imperialist. The 

convergence criterion of reaching 50 iterations has been considered. The convergence curve 

of reaching the optimal model by ICA and ICACO is presented in Fig. 9. As can be seen, the 

ICACO method has a faster convergence rate than ICA. 
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Figure 7. The positions of the initial population by ICACO 

 

 

 
Figure 8. The positions of the population by ICACO in iteration 12 and the final iteration 
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Figure 9. The convergence curve for optimal model by ICA and ICACO  

 

The optimization process shows that the rms of the percentage error is minimized at 

𝑎 = 2.939  and 𝑏 = 3.409 . This minimized value is 12.595.The statistical results 

obtained from 50 independent runs of optimization algorithm ICACO are presented in 

Table 2. The closeness of the values of the best, average, and worst solutions obtained, 

as well as the very small standard deviation, show the power of the proposed 

optimization method in reaching the optimal model. 

 
Table 2 The statistical results of optimal models by ICACO at 50 independent runs 

Best Average Worst Standard deviation 

12.5955 12.5956 12.6789 2.7339e-07 

 

It is noted that the rms of the percentage error of the Safaeifar and Farshidianfar 

model [44] is 12.596. So, the relation between the deformation and its velocity can be 

expressed as 
 

�̇�

�̇�−
= (1 − (

𝛿

𝛿𝑚𝑎𝑥
)

2.939

)

1
3.409

 (25) 

 

Thus, parameter 𝐼 can be expressed as 
 

𝐼 = ∫ (𝑦2.939(1 − 𝑦3/2)
1/3.409

) 𝑑𝑦
1

0

 (26) 

 

which can be evaluated as 
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𝐼 = 0.31788 (27) 

 

Combining relations (17) and (27), the hysteresis damping ratio can be obtained as 

Eq. (28). 
 

ℎ𝑟 = 1.25834
(1 − 𝑐𝑟)

𝑐𝑟

≈
200

159

(1 − 𝑐𝑟)

𝑐𝑟

 (28) 

 

The hysteresis damping factor in the proposed model can be obtained as Eq. (29). 
 

𝐶 =
200

159

(1 − 𝑐𝑟)

𝑐𝑟

𝐾

�̇�−
 (29) 

 

Thus, the proposed model of the contact force can be expressed as Eq. (30). 
 

𝐹 = 𝐾𝛿3/2 (1 +
200

159

(1 − 𝑐𝑟)

𝑐𝑟

�̇�

�̇�−
) (30) 

 

The relation (30) is called the optimal model. The relation between the hysteresis 

damping ratio and the coefficient of restitution in the optimal model, the numerical 

model, as well as Flores et al. [42], Hue and Guo [43], Safaeifar and Farshidianfar [44] 

models are shown in Fig. 10. 

Although Flores et al. and Hu and Guo's models have similar behavior as the 

numerical model, they are not completely consistent with the numerical model for the 

low values of the coefficient of restitution. 

Analyzing Fig. 10, it is clear that the optimal model proposed in this study and 

Safaeifar and Farshidianfar model are completely consistent with the numerical model in 

the whole range of the coefficient of restitution. So, the optimal model can be selected as 

the best contact force model for the collision between the two solid spheres in the whole 

range of the coefficient of restitution. Thus, this optimal model can be used in hard and 

soft impact problems. 

It is important to point out that the optimal model is valid for the direct central and 

frictionless impacts. In perfectly elastic contacts when the coefficient of restitution is 

equal to one, the hysteresis damping factor is zero and the optimal model is equivalent to 

the Hertz model. When the coefficient of restitution is equal to zero, the hysteresis 

damping factor becomes infinite, which is logical from the physical view of the contact 

process. 

 

 [
 D

O
I:

 1
0.

22
06

8/
ijo

ce
.2

02
4.

14
.1

.5
73

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 k

ha
bg

ah
.iu

st
.a

c.
ir

 o
n 

20
25

-0
4-

30
 ]

 

                            15 / 19

http://dx.doi.org/10.22068/ijoce.2024.14.1.573
https://khabgah.iust.ac.ir/ijoce/article-1-573-en.html


M. Sheikhi Azqandi, H. Safaeifar 

 

32 

 
Figure 10. The hysteresis damping ratio versus the coefficient of restitution in the contact force 

models 

 

 

5. CONCLUSION 
 

In this paper, the optimal model of the contact of the collision between the two solid bodies 

has been derived using a hybrid meta heuristic optimization method. The optimal model can 

be applied directly for the impact analysis of the multibody dynamics. It has been stated by 

using the energy balance through the contact process. Using the classical kinetic energy 

principle, the variation in the kinetic energy is determined and, then a relation between the 

deformation and its velocity is obtained. For discovering the optimal model, the root mean 

square of the hysteresis damping ratio is minimized by ICACO. ICACO is a hybrid and 

powerful metaheuristic optimization method and due to the complexity of the problem and 

calculations, it is applied. Furthermore, the convergence rate is improved using ICACO, and 

is converged best results. Overall, the optimal model is perfectly proper for investigating the 

contact analysis for different coefficients of restitution. To sum up, this optimal model is 

efficient for soft and hard contact problems and also is an independent formula, and it can be 

applied directly for impact analysis of the multibody dynamic systems. 
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